
www.manaraa.com

DISCRETE COSINE TRANSFORM OF ENCRYPTED IMAGES

Tiziano Bianchi, Alessandro Piva∗

Universit̀a di Firenze
Dip. Elettronica e Telecomunicazioni
Via S. Marta 3, 50139, Firenze - Italy

Mauro Barni

Universit̀a di Siena
Dip. Ingegneria dell’Informazione
Via Roma 56, 53100, Siena - Italy

ABSTRACT

Processing a signal directly in the encrypted domain provides an el-
egant solution in application scenarios where valuable signals must
be protected from a malicious processing device. In a previous pa-
per we considered the implementation of the 1D Discrete Fourier
Transform (DFT) in the encrypted domain, by using the homomor-
phic properties of the underlying cryptosystem. In this paper we
extend our previous results by considering the application of the 2-
dimensional DCT to encrypted images. The effect of the consecutive
application of the DCT algorithm first by rows then by columns is
considered, as well as the differences between the implementation
of the direct DCT algorithm and its fast version. Particular atten-
tion is given to block-based DCT, with emphasis on the possibility
of lowering the computational burden by parallel application of the
encrypted domain DCT algorithm to different image blocks.

Index Terms— Discrete Cosine transforms, error analysis, ho-
momorphic encryption, image encryption, signal processing in the
encrypted domain

1. INTRODUCTION

The availability of signal processing modules that work directly on
encrypted data would be of great help for applications where sensi-
tive signals must be processed. In the image processing field, a re-
cent example regards buyer-seller watermarking protocols [1] which
prevent the seller from obtaining a plaintext of the watermarked
copy, so that the image containing the buyer’s watermark can not be
illegally distributed to third parties by the seller. Signal processing
in the encrypted domain (s.p.e.d.) is a new field of research aiming
at developing a set of specific tools for processing encrypted data to
be used as building blocks in a large class of applications. In image
processing, one of such tools is the discrete cosine transform (DCT).
The availability of an efficient s.p.e.d. DCT would allow a large
number of processing tasks to be carried out on encrypted images,
like the extraction of encrypted features from an encrypted image.

In [2], we considered the similar problem of implementing a
discrete Fourier transform on encrypted data. Here, we will extend
the previous results by considering a s.p.e.d. implementation of the
DCT. We will assume that the chosen cryptosystem ishomomorphic
with respect to the addition, i.e., there exists an operatorφ(·, ·) such
that

D[φ(E[a], E[b])] = a + b (1)
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whereE[·] andD[·] denote the encryption and decryption operators.
With such a cryptosystem it is indeed possible to add two encrypted
values without first decrypting them and it is possible to multiply an
encrypted value by a public integer value by repeatedly applying the
operatorφ(·, ·). Moreover, we will assume that the cryptosystem is
probabilistic, that is, given two encrypted values it is not possible
to decide if they conceal the same value. This is fundamental, since
the alphabet to which the input pixels belong is usually limited. A
widely known example of a cryptosystem fulfilling both the above
requirements is the Paillier cryptosystem [3], for which the operator
φ(·, ·) is a modular multiplication.

The DCT can be computed on the encrypted pixel values by
relying on the homomorphic properties and the fact that the DCT
coefficients are public. However, this requires several issues to be
solved. The first one is that we must represent the pixel values, the
DCT coefficients, and the transformed values in the domain of the
cryptosystem, i.e., as integers on a finite field/ring. Another problem
is that encrypted values can not be scaled or truncated by relying on
homomorphic computations only. In general, for scaling the inter-
mediate values of the computation we should allow two or more par-
ties to interact [4]. However, since we would keep the s.p.e.d. DCT
as simple as possible, it is preferable to avoid the use of interactive
protocols. A final problem is that encrypting each pixel separately
increases the size of the encrypted image and affects the complexity.

In this paper, we will provide solutions to the above issues. A
convenient s.p.e.d. signal model will be proposed, allowing us to
define both a s.p.e.d. DCT and a s.p.e.d. fast DCT and to extend
them to the 2D case, by considering the consecutive application of
the DCT first by rows then by columns. Moreover, we will propose
a block-based s.p.e.d. DCT which permits the parallel application of
the s.p.e.d. DCT algorithm to different image blocks, thus lowering
both the bandwidth usage and the computational burden.

2. SIGNAL MODEL

We will describe the method assuming the signals are 1-D sequences.
The extension to the 2-D case is straightforward by using separable
processing along rows and columns. Let us consider a signalx(n) ∈
R, n = 0, . . . , M −1. In the following, we will assume|x(n)| ≤ 1.
The scaled DCT of type II (DCT-II) ofx(n) is defined as

X(k) =

M−1
∑

n=0

x(n) cos
π(2n + 1)k

2M
, k = 0, 1, . . . , M − 1. (2)

As in [2], the integer DCT is defined as

S(k) =

M−1
∑

n=0

CM (n, k)s(n), k = 0, . . . , M − 1 (3)
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wheres(n) = ⌈Q1x(n)⌋, CM (n, k) =
⌈

Q2 cos π(2n+1)k
2M

⌋

, ⌈·⌋ is

the rounding function andQ1 andQ2 are suitable scaling factors.
Since all computations are between integers and there is no scal-

ing, the expression above can be evaluated in the encrypted domain
by relying on the homomorphic properties. If the inputs are en-
crypted with the Paillier cryptosystem, the s.p.e.d. DCT is

E[S(k)] =

M−1
∏

n=0

E[s(n)]CM (n,k), k = 0, . . . , M − 1 (4)

where all computations are done moduloN2 [3].

3. S.P.E.D. DCT

The computation of the DCT using (3) requires two problems to be
tackled with. The first one is that there will be a scaling factor be-
tweenS(k) andX(k). The second one is that, if the cryptosystem
encrypts integers moduloN , one must ensure that there is a one-
to-one mapping betweenS(k) andS(k) mod N . A solution is to
find anupper boundonS(k) such that|S(k)| ≤ QS , and verify that
N > 2QS . We will show thatS(k) can be expressed in general as

S(k) = KX(k) + ǫS(k) (5)

whereK is a suitable scaling factor andǫS(k) models the quantiza-
tion error. Based on the above equation, the desired DCT output can
be estimated as̃X(k) = S(k)/K, and the upper bound is

QS = MK + ǫS,U (6)

whereǫS,U is an upper bound onǫS(k). The value of bothK and
ǫS,U will depend on the particular implementation of the DCT.

3.1. Direct Computation

Let us expresss(n) = Q1x(n) + ǫs(n) and CM (n, k) =

Q2 cos π(2n+1)k
2M

+ ǫC(n, k). If the DCT is directly computed
by applying (3), then we have

S(k) = Q1Q2X(k) + ǫS(k) (7)

whereǫS(k) =
∑M−1

n=0

[

Q1x(n)ǫC(n, k) + Q2ǫs(n) cos π(2n+1)k
2M

+ǫs(n)ǫC(n, k)]. The scaling factor isKD = Q1Q2. As to the
quantization error, we obtain the following upper bound

|ǫS(k)| ≤ M

(

Q1

2
+

Q2

2
+

1

4

)

= ǫS,U,D (8)

from whichQS,D = MQ1Q2 + ǫS,U,D.

3.2. Fast DCT

In order to obtain a s.p.e.d. version of the fast DCT, we will re-
fer to the recursive matrix representation in [5]. Given[TM ]nk =

cos π(2n+1)k
2M

, we have

TM =PM

[

IM/2 0

0 LM/2

] [

TM/2 0

0 TM/2

]

×
[

IM/2 0

0 DM/2

] [

IM/2 JM/2

IM/2 −JM/2

]

=AM

[

TM/2 0

0 TM/2

] [

IM/2 0

0 DM/2

]

BM

(9)

whereDM/2 = diag
{

cos π
2M

, cos 3π
2M

, . . . , cos (M−1)π
2M

}

,

LM/2 =



















1 0 0 . . . 0 0
−1 2 0 0 0
1 −2 2 0 0
...

. . .
...

1 −2 2 2 0
−1 2 −2 . . . −2 2



















,

JM is obtained by theM × M identity matrix by reversing the col-
umn order andPM is a suitable permutation matrix (see [5]).

Since the only non integer matrix in (9) isDM/2, the corre-
sponding s.p.e.d. structure can be recursively defined as

CM = AM

[

CM/2 0

0 CM/2

] [

Q2IM/2 0

0 D̃M/2

]

BM

(10)
where we definẽDM/2 = ⌈Q2DM/2⌋.

As to the upper bound analysis, let us consider themth stage
of the recursion and express the quantized matrices asD̃2m =

Q2D2m + E
(m)
D andC2m = K(m)

T2m + E
(m)
T . Then, we can

rewrite (10) as

C2m+1 =A2m+1

[

K(m)
T2m + E

(m)
T 0

0 K(m)
T2m + E

(m)
T

]

×
[

Q2I2m 0

0 Q2D2m + E
(m)
D

]

B2m+1

=K(m)Q2T2m+1

+A2m+1

{[

K(m)
T2m 0

0 K(m)
T2m

] [

0 0

0 E
(m)
D

]

+

[

E
(m)
T 0

0 E
(m)
T

]

[

0 0

0 E
(m)
D

]

+

[

E
(m)
T 0

0 E
(m)
T

]

[

Q2I2m 0

0 Q2D2m

]

}

B2m+1

=K(m+1)
T2m+1 + E

(m+1)
T

(11)

From the above equation, we have both a recursive rela-
tion on the scaling factor and a recursive relation on the quan-
tization error. Let us consider the vector of quantized inputs
s = [s(0), s(1), . . . , s(M − 1)]T . With a notation similar to
the scalar case, we can expresss = Q1x + eS , wherex is vector
containing the input values andeS is a vector of quantization errors.
Hence, the s.p.e.d. fast DCT is given by

C2ν s = K(ν)Q1T2ν x+K(ν)
T2ν es +E

(ν)
T Q1x+E

(ν)
T es. (12)

As to the scaling factor, we haveKF = K(ν)Q1. SinceK(0) = 1,
it is easy to derive the final scaling factor asKF = Qν

2Q1. As
to the quantization error, we have|ǫS(k)| ≤ MK(ν)/2 + (Q1 +

1/2)||E(ν)
T ||∞, where|| · ||∞ denotes the maximum absolute row

sum norm of a matrix. Based on (11), we can give an equivalent
recursive relation on||E(m)

T ||∞ as

||E(m+1)
T ||∞ ≤ (2m+1 − 1)

[

2mK(m) + ||E(m)
T ||∞ (2Q2 + 1)

]

(13)
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where we used||A2m+1 ||∞ = 2m+1 − 1, ||B2m+1 ||∞ = 2,
||K(m)

T2m ||∞ = 2mK(m), and ||E(m)
D ||∞ = 1/2. At the start

of the recursion we have||E(0)
T ||∞ = 0, sinceT1 = 1 and there is

no quantization error. Hence, an upper bound on||E(ν)
T ||∞ can be

derived as

||E(ν)
T ||∞ ≤

ν−1
∑

k=0

(2Q2 + 1)k2ν−kQν−k
2

ν
∏

r=ν−k

(2r+1 − 1) = ǫE,U

(14)
from which we derive the upper bound on the quantization error as

|ǫS(k)| ≤ MQν
2

2
+

(

Q1 +
1

2

)

ǫE,U = ǫS,U,F . (15)

Finally, the upper bound onS(k) is QS,F = MQ1Q
ν
2 + ǫS,U,F .

4. EXTENSION TO 2D-DCT

In the case of separable processing of the rows and the columns of
an image, the expressions derived in the preceding section can be
extended to the 2D case in an easy way. Let us assume that the
2D-DCT processes first the rows and then the columns. After the
processing of the rows, the input to the next DCT will be expressed
as in (5). Hence, the scaling factor can be obtained by substituting
Q1 with K whereas the upper bound on the quantization error can
be derived by noting that|S(k)| ≤ MK+ǫS,U and|ǫS(k)| ≤ ǫS,U .

In the case of the direct DCT implementation, this leads to

K2D
D =Q2KD = Q2

2Q1 (16)

ǫ2D
S,U,D =M

(

MKD

2
+ Q2ǫS,U,D +

ǫS,U,D

2

)

(17)

Q2D
S,D =M2K2D

D + ǫ2D
S,U,D (18)

whereas in the case of the fast DCT we obtain

K2D
F =Qν

2KF = Q2ν
2 Q1 (19)

ǫ2D
S,U,F =MQν

2ǫS,U,F + (MKF + ǫS,U,F ) ǫE,U (20)

Q2D
S,F =M2K2D

F + ǫ2D
S,U,F . (21)

5. S.P.E.D. BLOCK-BASED DCT

Several image processing algorithms, instead of applying the DCT
to the whole image, subdivide it into equal sized (usually square)
blocks and compute the DCT of each block. The size of such blocks
is usually quite small: typically8 × 8 blocks or16 × 16 blocks are
used in most of the applications.

From the s.p.e.d. perspective, this suggests two things: first,
even if rescaling is not applied, in the case of a block based s.p.e.d.
DCT the maximum value of the DCT outputs will not be very high.
Since the modulus of practical cryptosystems has a size of one thou-
sand bits or more, it is expected that the outputs of the s.p.e.d. block-
based DCT will be far for exploiting the full bandwidth of the mod-
ulus. Second, each block undergoes exactly the same processing.
Hence, this permits a parallel processing of several blocks by simply
packing the pixels having the same position within the blocks in a
single word.

In order to exploit the above ideas, we propose a s.p.e.d. block
DCT (BDCT) based on a different representation of the input pixels.
Let us considerR distinct blocks of an image. For the sake of sim-
plicity, we can assume the blocks as one-dimensional, having size

M , since the extension to the 2D case is straightforward using sepa-
rable processing. Let us define the block bandwidth asB = ⌊ R

√
N⌋.

Moreover, let us assume that the input pixel values have been quan-
tized as in Section 2. The pixels having the same position within
each block are packed in a single word as

sP (n) =

R−1
∑

i=0

[si(n) + Q1]B
i (22)

wheresi(n) denotes the pixel having positionn within theith block.
If si(n) + Q1 < B, i = 0, 1, . . . , R − 1 then the packed word can
be thought as a baseB positive number whose digits are given by
si(n)+Q1. Note that the offsetQ1 is required in order to have pos-
itive digits. The above condition is surely satisfied ifB > 2Q1.
Moreover, thanks to the definition ofB we have|sP (n)| < N .
Hence, given the moduloN representation ofsP (n) one can al-
ways extract the correct values ofsi(n), i = 0, 1, . . . , R − 1 (That
is, it is possible to define a one-to-one mapping betweensP (n) and
[s0(n), s1(n), . . . , sR−1(n)].).

The s.p.e.d. BDCT is defined as

SP (k) =

M−1
∑

n=0

sP (n)C(n, k) − Ω(k) (23)

where

Ω(k) =

R−1
∑

i=0

[

Q1

M−1
∑

n=0

C(n, k) − QS

]

Bi. (24)

Theorem 1 The BDCT satisfies

SP (k) =

R−1
∑

i=0

[Si(k) + QS ]Bi (25)

whereSi(k) is the s.p.e.d. DCT ofsi(n). Moreover, ifB > 2QS

then the BDCT is correctly defined moduloN .

Proof: let us consider the following equalities

M−1
∑

n=0

sP (n)C(n, k) =

M−1
∑

n=0

R−1
∑

i=0

[si(n) + Q1]B
iC(n, k)

=

R−1
∑

i=0

M−1
∑

n=0

[si(n) + Q1]C(n, k)Bi

=

R−1
∑

i=0

[

Si(k) + Q1

M−1
∑

n=0

C(n, k)

]

Bi.

(26)

Then, by subtracting (24) from the last equality (25) is readily
proved. Moreover, ifB > 2QS then |SP (k)| < N , so that it is
possible to recoverSi(k), i = 0, 1, . . . , R − 1 from SP (k).

By using the BDCT we are able to processR blocks using a sin-
gle s.p.e.d. DCT. Therefore, the complexity of the s.p.e.d. BDCT
is reduced by a factorR with respect to that of the s.p.e.d. DCT.
Moreover, also the bandwidth usage is reduced by the same factor,
since we packR pixels into a single cyphertext. However, note that
extracting a single encrypted coefficient from the packed word re-
quires some interactive protocol.

Finally, we would like to point out that the fast DCT algorithm
can be used for the BDCT as well. The fast BDCT algorithm can
be described by the following steps: 1) compute the fast DCT of the
packed signalsP (n); 2) compute the offsetΩ(k) by applying the
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fast DCT to a vector containing allQ1s and by usingQS,F in (24);
compute the fast BDCT by subtractingΩ(k) found in 2) from the
result of 1). In order to verify that the above algorithm is correct, it
suffices to substituteC(n, k) in (23)-(24) with the(n, k) element of
the matrixCM as defined in (10).

6. NUMERICAL EXAMPLES

We will consider the application of the s.p.e.d. 2D-DCT and 2D-
BDCT to squareM × M 8-bit greyscale images. The quantization
scaling factor can be assumed asQ1 = 128. As toQ2, we will as-
sume that the cosine values are quantized so as not to exceed the
quantization error of the corresponding plaintext implementation.
Three plaintext implementations are considered: 1) 16-bit fixed point
(XP); 2) single precision floating point (FP1); 3) double precision
floating point (FP2). In the first case, we can assumeQ2 = 215. In
the floating point case, since the smallest magnitude of a cosine value
is equal tosin(π/2M), we needQ2 > 2f/ sin(π/2M), wheref is
the number of bits of the fractional part of the floating point repre-
sentation. For the sake of simplicity, we will assumeM ≤ 4096, so
that we can chooseQ2 = 236 (FP1) andQ2 = 265 (FP2).

Since the values ofQS in (18)-(21) can be huge, in the case of
the full frame DCT we will consider an upper bound on the number
of bits required in order to correctly represent the DCT outputs. If
we assumeQ2D

S,Z < 2M2K2D
Z , this can be expressed as

⌈log2 Q2D
S,Z⌉ + 1 < 2ν + ⌈log2 K2D

Z ⌉ + 2 = nU,Z (27)

whereν = log2 M andZ = {D, F}. Note that iflog2 N > nU,Z ,
it follows thatN > 2QS,Z . In Table 1, we give some upper bounds
considering different values ofM andQ2. Highlighted in bold are
the cases which can not be implemented relying on a 1024-bit mod-
ulus, which is a standard in several cryptographic applications. As
can be seen, except for the case of FP2, a full frame s.p.e.d. DCT
can be always implemented relying on a standard modulus.

As to the s.p.e.d. 2D-BDCT, we consider an estimate of the
number of pixels that can be safely packed into a single word. A
safe implementation requiresB = ⌈2QS,Z⌉. Since we must have
B < R

√
N , this leads to

Rmax =

⌊

log2 N

log2⌈2QS,Z⌉

⌋

≈
⌊

⌊log2 N⌋
log2⌈2QS,Z⌉

⌋

= RU,Z . (28)

In Table 1, we give some values ofRU,Z considering8 × 8 and
16 × 16 BDCTs and different precisions. The results demonstrate
that the s.p.e.d. BDCT approach can effectively reduce both the
bandwidth requirements and the complexity, especially for the fixed
point case. It is worth noting that a direct implementation allows us
to increaseRU,Z up to three times with respect to the fast BDCT.
Since the BDCT usually works with small sized blocks, the com-
plexity of the direct implementation will not be much higher than
that of the fast implementation. For instance, an8 × 8 fast DCT re-
quires 12 multiplications [6] versus the 64 multiplications of a naive
direct DCT. Hence, there can be cases in which it is preferable to
employ a direct s.p.e.d. BDCT, since this will reduce the bandwidth
usage at a small cost in complexity.

7. CONCLUDING REMARKS

We have considered the implementation of the DCT on an encrypted
image relying on the homomorphic properties of the underlying
cryptosystem. It has been shown how the maximum allowable DCT

Table 1. Upper bounds (in bits) on the output values of s.p.e.d. 2D-
DCTs having different size.Q2 = 215 is equivalent to a 16 bit fixed
point implementation.Q2 = 236 andQ2 = 265 are equivalent to
a single precision and a double precision floating point implementa-
tions, respectively. A squareM ×M 2D-DCT has been considered.

Q2 = 215 Q2 = 236 Q2 = 265

M nU,D nU,F nU,D nU,F nU,D nU,F

64 51 201 93 453 151 801
256 55 265 97 601 155 1065
1024 59 329 101 749 159 1329
4096 63 393 105 897 163 1593

Table 2. Upper bounds on the number of blocksR that can be pro-
cessed in parallel by a s.p.e.d.M ×M 2D-BDCT. We have assumed
⌊log2 N⌋ = 1023.

Q2 = 215 Q2 = 236 Q2 = 265

M RU,D RU,F RU,D RU,F RU,D RU,F

8 23 8 11 4 7 2
16 22 6 11 3 7 1

size depends on the modulus of the cryptosystem, on the chosen
DCT implementation, and on the required precision. We have also
proposed a s.p.e.d. block DCT which is based on the packing of
several pixels into a single encrypted word, thus permitting the par-
allel application of the s.p.e.d. DCT algorithm to different image
blocks. The results demonstrate that the proposed s.p.e.d. BDCT
can effectively lower both the bandwidth usage and the computa-
tional burden. Our approach gives useful design criteria for the
implementation of s.p.e.d. image processing modules and suggests
other issues to be addressed in future research on s.p.e.d. topics, for
example the tradeoff between bandwidth usage and complexity.
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