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ABSTRACT whereE][-] andD]-] denote the encryption and decryption operators.

Processing a signal directly in the encrypted domain provides an e}ith such a cryptosystem itis indeed possible to add two encrypted
egant solution in application scenarios where valuable signals mu¥g!ues without first decrypting them and it is possible to multiply an
be protected from a malicious processing device. In a previous p&ncrypted value by a public integer value by repeatedly applying the
per we considered the implementation of the 1D Discrete FouriePP€ratora(-, ). Moreover, we will assume that the cryptosystem is
Transform (DFT) in the encrypted domain, by using the homomorprobat_)lllst_lc; that is, given two encrypted va!ue_s it is not p055|b_le
phic properties of the underlying cryptosystem. In this paper wdo decide if they copceal the same value. ThIS.IS fundamgnt_al, since
extend our previous results by considering the application of the 2N alphabet to which the input pixels belong is usually limited. A
dimensional DCT to encrypted images. The effect of the consecutiv¥idely known example of a cryptosystem fulfilling both the above
application of the DCT algorithm first by rows then by columns is 'équirements is the Pall_lle_r cryptosystem [3], for which the operator
considered, as well as the differences between the implementatigt{ > -) IS @ modular multiplication. )

of the direct DCT algorithm and its fast version. Particular atten- _ 1he DCT can be computed on the encrypted pixel values by
tion is given to block-based DCT, with emphasis on the possibility"€ying on the homomorphic properties and the fact that the DCT

of lowering the computational burden by parallel application of theCO€fficients are public. However, this requires several issues to be
encrypted domain DCT algorithm to different image blocks. solved. The first one is that we must represent the pixel values, the

] ] ) DCT coefficients, and the transformed values in the domain of the
Index Terms— Discrete Cosine transforms, error analysis, ho-cryptosystem, i.e., as integers on a finite field/ring. Another problem
momorphic encryption, image encryption, signal processing in thes that encrypted values can not be scaled or truncated by relying on
encrypted domain homomorphic computations only. In general, for scaling the inter-
mediate values of the computation we should allow two or more par-
1. INTRODUCTION ties to interact [4]. However, since we would keep the s.p.e.d. DCT
as simple as possible, it is preferable to avoid the use of interactive
The availability of signal processing modules that work directly onprotocols. A final problem is that encrypting each pixel separately
encrypted data would be of great help for applications where sensincreases the size of the encrypted image and affects the complexity.
tive signals must be processed. In the image processing field, a re- In this paper, we will provide solutions to the above issues. A
cent example regards buyer-seller watermarking protocols [1] whickonvenient s.p.e.d. signal model will be proposed, allowing us to
prevent the seller from obtaining a plaintext of the watermarkediefine both a s.p.e.d. DCT and a s.p.e.d. fast DCT and to extend
copy, so that the image containing the buyer’s watermark can not béem to the 2D case, by considering the consecutive application of
illegally distributed to third parties by the seller. Signal processingthe DCT first by rows then by columns. Moreover, we will propose
in the encrypted domain (s.p.e.d.) is a new field of research aiming block-based s.p.e.d. DCT which permits the parallel application of
at developing a set of specific tools for processing encrypted data the s.p.e.d. DCT algorithm to different image blocks, thus lowering
be used as building blocks in a large class of applications. In imagboth the bandwidth usage and the computational burden.
processing, one of such tools is the discrete cosine transform (DCT).
The availability of an efficient s.p.e.d. DCT would allow a large
number of processing tasks to be carried out on encrypted images,

like the extraction of encrypted features from an encrypted image. \y,g |l describe the method assuming the signals are 1-D sequences.
In [2], we considered the similar problem of implementing a the extension to the 2-D case is straightforward by using separable

discrete Fourier transform on encrypted data. Here, we will eXtengrocessing along rows and columns. Let us consider a signale

the previous results by considering a s.p.e.d. implementationofthe .. _ o = 71/ _1 Inthe following, we will assuméz(n)| < 1.

DCT. We will assume that the chosen cryptosystetmisiomorphic  Tne scaled DCT of type Il (DCT-11) of (n) is defined as
with respect to the addition, i.e., there exists an operatar) such

2. SIGNAL MODEL

that Nl m(2n+ 1)k
D[¢(E[a], E]b])] =a+b (1) X(k) = Z x(n)COST, k=0,1,...,.M —-1. (2)
*The work described in this paper has been supported in paebfu- =
ropean Commission through the IST Programme under Contract42883 As in [2], the integer DCT is defined as
- SPEED. The information in this document reflects only the atgtviews,
is provided as is and no guarantee or warranty is given tteainflormation M—1
is fit for any particular purpose. The user thereof uses tfwrimation at its S(k) = Z Cu(n,k)s(n), k=0,...,M—1 (3)
sole risk and liability. fort

www.manaraa.com



wheres(n) = [Qiz(n)], Cam(n, k) = | Q2 cos ﬁ(2;;;1)kJ [-]is  whereD,;/, = diag {cos F37,COS 2. cos (MQMl)” },
the rounding function an@: and@- are suitable scaling factors.
Since all computations are between integers and there is no scal- 1 0 0O ... 0 O
ing, the expression above can be evaluated in the encrypted domain -1 2 0 0 0
by relying on the homomorphic properties. If the inputs are en- 1 -2 2 0 O
crypted with the Paillier cryptosystem, the s.p.e.d. DCT is Loy = <o
M—1 1 -2 2 2 0
Cumb) p—0,... M—-1 (4) -1 2 -2 ... -2 2

k) =[] Els(n)]

where all computations are done modNg [3].

3. S.P.E.D.DCT

The computation of the DCT using (3) requires two problems to be
tackled with. The first one is that there will be a scaling factor be-
tweenS(k) and X (k). The second one is that, if the cryptosystem

J s is obtained by thé/ x M identity matrix by reversing the col-

umn order and , is a suitable permutation matrix (see [5]).
Since the only non integer matrix in (9) 9,,/2, the corre-

sponding s.p.e.d. structure can be recursively defined as

} |:Q2IJVI/2 0
0 Dy

Chuy2 0

Cy=Anm 0 Chi/e

By
(10)

encrypts integers modul®y, one must ensure that there is a one-where we defin(f)M/Q = [Q2D /2]

to-one mapping betwee$i(k) and.S(k) mod N. A solution is to
find anupper boundn S(k) such thatS (k)| < Qs, and verify that

As to the upper bound analysis, let us considerstita stage
of the recursion and express the quantized matricePas =

N > 2Qs. We will show thatS(k) can be expressed in generalas  Q,Dym + E andCom = K™ Tom + E{™. Then, we can

S(k) = KX (k) + es(k) 5)

whereK is a suitable scaling factor ard (k) models the quantiza-
tion error. Based on the above equation, the desired DCT output can

be estimated a& (k) = S(k)/K, and the upper bound is

Qs =MK + €S,U (6)
wherees, v is an upper bound oas (k). The value of bothK and
es,v Will depend on the particular implementation of the DCT.

3.1. Direct Computation

Let us expresss(n) = Qiz(n) + es(n) and Cy(n, k) =
Q2 cos TR 4 e (n, k). If the DCT is directly computed
by applying (3), then we have

S(k) = Q1Q2X (k) + es(k) @)

wherees(k) = M1 [Qlaz( Jec(n, k) + Qaes(n) cos “EELE
+es(n)ec(n, k)]. The scaling factor iF{p = Q1Q2. As to the
guantization error, we obtain the following upper bound

les(k)| < M (% + @ + ) — s ®)

from whichQs.p = MQ1Q2 + €s,u,p.

3.2. FastDCT

In order to obtain a s.p.e.d. version of the fast DCT, we will re-

fer to the recursive matrix representation in [5]. Gi@w]ne =

M: we have

COs S

Y 0 T, 0
Ty =Py M/2 M/2 }

L 0 Luy }{ 0 T2
I5Y9P:

. T2 0
0 Dy Taryo

. _TM/2 0
=AM 0T T

Jniy2
9
—J 2 } ©

Iary2 0
0 Dy

] By

rewrite (10) as

K(m)sz + ngm) 0
Camis =Aamis { 0 KTy + ESY
Q2127n 0
8 [ 0 QDam +EYY | Pt
=K QT ym+1
K™ Tom 0 0 o
Ay m
Hhgmi H 0 K™Tym || 0 EOY
+ E%m) ? ) |: 0 ?m) }
0 ET 0 ED
E/™ o0 QoIom 0
oo E{ 0  QuDom | (B2

:K(m+1)T2m+1 + E(7Z71+1)
(11)

From the above equation, we have both a recursive rela-
tion on the scaling factor and a recursive relation on the quan-
tization error. Let us consider the vector of quantized inputs
s = [5(0),s(1),...,s(M — 1)]T. With a notation similar to
the scalar case, we can express Q1x + eg, wherex is vector
containing the input values arg is a vector of quantization errors.
Hence, the s.p.e.d. fast DCT is given by

Cors = KYQiTorx+ K To e, +EY Qix+EYe,. (12)
As to the scaling factor, we hav€r = K Q,. SinceK® =1,

it is easy to derive the final scaling factor & = Q5Q:. As
to the quantization error, we hayes (k)| < MK™) /2 4+ (Q: +
1/2)||E(T”)|\oo, where|| - || denotes the maximum absolute row
sum norm of a matrix. Based on (11), we can give an equivalent
recursive relation OtﬂE(T’")HOC as

IBE |

e < @M =1 27K 4 IEGY | (2Q2 + 1)

(13)
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where we used|Asmii|lee = 2™ — 1, ||Bomti|le = 2, M, since the extension to the 2D case is straightforward using sepa-

1K™ Tym|oo = 2" K™ and||EY™ || = 1/2. Atthe start rable processing. Let us define the block bandwidtBas | V/N .

of the recursion we hav@E(O)H — 0, sinceT; — 1 and there is Moreover, let us assume that the input pixel values have been quan-
T lloo — Yy -

o H b W) b tized as in Section 2. The pixels having the same position within
ggrﬂl%%ngszat'on error. Hence, an upper bound| [l caNbE  oqch plock are packed in a single word as

oyl
—_

HE(T")HOOJZ_I@QZH) Ry H 2 1) = epu sp(n) = _lsi(n) + @il B’ (22)
k=0

2

Il
o

r=v—=k

(14) wheres;(n) denotes the pixel having positienwithin thesth block.
from which we derive the upper bound on the quantization error as si(n)+ Q1 < B,i=0,1,..., R — 1 then the packed word can
MQ be thought as a bas® positive number whose digits are given by
les(k)| < 2 (Q1 + ) = €s,U,F- (15)  s:(n)+ Q1. Note that the offsef) is required in order to have pos-
itive digits. The above condition is surely satisfiedBf > 2Q;.
Finally, the upper bound ofi(k) is Qs.r = MQ1Q% + es.u.r. Moreover, thanks to the definition d8 we have[sp(n)| < N.
Hence, given the modul®V representation ofp(n) one can al-
ways extract the correct values@fn), i = 0,1,..., R — 1 (That
is, it is possible to define a one-to-one mapping betwagm) and
si(n),...,sr—1(n)].).
The s.p.e.d. BDCT is defined as

4. EXTENSION TO 2D-DCT

In the case of separable processing of the rows and the columns L)P
an image, the expressions derived in the preceding section can be

extended to the 2D case in an easy way. Let us assume that the M—1
2D-DCT processes first the rows and then the columns. After the Sp(k) = Z sp(n)C(n, k) — Q(k) (23)
processing of the rows, the input to the next DCT will be expressed n=0

as in (5). Hence, the scaling factor can be obtained by substitutinlg/
Q1 with K whereas the upper bound on the quantization error cai’"€"®

be derived by noting that (k)| < M K +es,v andles (k)| < es,u. Q(k) = Cln. k) — Bi 24
In the case of the direct DCT implementation, this leads to (k) Z @ Z (n.k) = Qs )| B. (24)

1=0 n=0
K3’ =Q:Kp = Q3Q1 (16)  Theorem 1 The BDCT satisfies
MKp
€sv.p =M <72 + Q2es5,u,p + GS;D) (17) R-1
Z )+ Qs]B (25)
Qb =M*Kp’ + c§up (18) =
whereas in the case of the fast DCT we obtain whereS; (k) is the s.p.e.d. DCT ofi(n). Moreover, ifB > 2Qs
then the BDCT is correctly defined modulo
Ki¥ =Qike = @y: (19 Proof: | ider the followi lit
y roof: let us consider the following equalities
€dUr =MQesur + (MKp + es,ur) e (20) 9€q
— KZD 2D . 21 M—-1 M—-1R-1 ]
QS F = F + €S, U F ( ) Z S _ Z[ (n) + Ql}BZC(n, k’)
= n=0 =0
5. S.P.E.D. BLOCK-BASED DCT Re1M—1
. : : : . = C(n,k)B*  (26)
Several image processing algorithms, instead of applying the DCT = n:O
to the whole image, subdivide it into equal sized (usually square) R1 M1
blocks and compute the DCT of each block. The size of such blocks _ _
is usually quite small: typicallg x 8 blocks or16 x 16 blocks are o P Si(k) + @ nZ:O Cln. k)

used in most of the applications.

From the s.p.e.d. perspective, this suggests two things: firsThen, by subtracting (24) from the last equality (25) is readily
even if rescaling is not applied, in the case of a block based s.p.e.droved. Moreover, ifB > 2Qs then|Sp(k)| < N, so that it is
DCT the maximum value of the DCT outputs will not be very high. possible to recove$;(k), 7 =0,1,..., R — 1 from Sp(k).

Since the modulus of practical cryptosystems has a size of one thou- By using the BDCT we are able to procd?$locks using a sin-
sand bits or more, it is expected that the outputs of the s.p.e.d. blockfle s.p.e.d. DCT. Therefore, the complexity of the s.p.e.d. BDCT
based DCT will be far for exploiting the full bandwidth of the mod- is reduced by a factoR with respect to that of the s.p.e.d. DCT.
ulus. Second, each block undergoes exactly the same processifgoreover, also the bandwidth usage is reduced by the same factor,
Hence, this permits a parallel processing of several blocks by simplgince we packR pixels into a single cyphertext. However, note that
packing the pixels having the same position within the blocks in axtracting a single encrypted coefficient from the packed word re-
single word. quires some interactive protocol.

In order to exploit the above ideas, we propose a s.p.e.d. block Finally, we would like to point out that the fast DCT algorithm
DCT (BDCT) based on a different representation of the input pixelscan be used for the BDCT as well. The fast BDCT algorithm can
Let us considerr distinct blocks of an image. For the sake of sim- be described by the following steps: 1) compute the fast DCT of the
plicity, we can assume the blocks as one-dimensional, having sizgacked signakp(n); 2) compute the offsef(k) by applying the
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fast DCT to a vector containing al)1s and by usings,  in (24);
compute the fast BDCT by subtractiig(k) found in 2) from the
result of 1). In order to verify that the above algorithm is correct, it
suffices to substitut€’(n, k) in (23)-(24) with the(n, k) element of
the matrixC,; as defined in (10).

Table 1. Upper bounds (in bits) on the output values of s.p.e.d. 2D-
DCTs having different sizeQ, = 2'° is equivalent to a 16 bit fixed
point implementation.Q, = 23¢ and@Q. = 2% are equivalent to

a single precision and a double precision floating point implementa-
tions, respectively. A squat®l x M 2D-DCT has been considered.

15 36 65
6. NUMERICAL EXAMPLES Q2 =2 Q2 =2 Q2 =2
M | nup [ nur [ nup | nur | nup [ nur
We will consider the application of the s.p.e.d. 2D-DCT and 2D- 64 51 | 201 | 93 | 453 | 151 | 801
BDCT to squarel x M 8-bit greyscale images. The quantization 256 | 55 | 265 | 97 | 601 | 155 | 1065
scaling factor can be assumed@s = 128. As to Q-, we will as- 1024 59 | 329 | 101 | 749 | 159 | 1329
sume that the cosine values are quantized so as not to exceed the| 4096 | 63 393 | 105 | 897 | 163 | 1593

quantization error of the corresponding plaintext implementation.
Three plaintextimplementations are considered: 1) 16-bit fixed point

(XP); 2) single precision floating point (FP1); 3) double precisionTable 2. Upper bounds on the number of blocksthat can be pro-
floating point (FP2). In the first case, we can assdpae= 2'°. In  cessed in parallel by a s.p.e & x M 2D-BDCT. We have assumed
the floating point case, since the smallest magnitude of a cosine valyéog, N | = 1023.

is equal tasin(7/2M), we needQ> > 27 /sin(w/2M), wheref is Qs =21 Qs = 20 Qs = 20
the number of bits of the fractional part of the floating point repre- W Ruo [ For T Rub [ T oo [ o
sentation. For the sake of simplicity, we will assufife< 4096, so : : > . : .
that we can choos@, = 2%¢ (FP1) andQ, = 2%° (FP2). 8 23 8 11 4 7 2
Since the values af)s in (18)-(21) can be huge, in the case of 16 22 6 1 3 7 1

the full frame DCT we will consider an upper bound on the number

of bits required in order to correctly represent the DCT outputs. If

we assum@%’f’z < 2M?KZP, this can be expressed as size depends on the modulus of the cryptosystem, on the chosen
DCT implementation, and on the required precision. We have also
proposed a s.p.e.d. block DCT which is based on the packing of
several pixels into a single encrypted word, thus permitting the par-
wherev = log, M andZ = {D, F'}. Note thatiflog, N > nv,z,  allel application of the s.p.e.d. DCT algorithm to different image

it follows that vV > 2Qs,z. In Table 1, we give some upper bounds plocks. The results demonstrate that the proposed s.p.e.d. BDCT
considering different values dff andQ@:. Highlighted in bold are  can effectively lower both the bandwidth usage and the computa-
the cases which can not be implemented relying on a 1024-bit modional burden. Our approach gives useful design criteria for the
ulus, which is a standard in several cryptographic applications. Agmplementation of s.p.e.d. image processing modules and suggests
can be seen, except for the case of FP2, a full frame s.p.e.d. DCdther issues to be addressed in future research on s.p.e.d. topics, f

can be always implemented relying on a standard modulus. example the tradeoff between bandwidth usage and complexity.
As to the s.p.e.d. 2D-BDCT, we consider an estimate of the

number of pixels that can be safely packed into a single word. A
safe implementation requird3 = [2Qs,z]. Since we must have

B < ¥/N, this leads to

[log, ?S.,DZ-‘ +1 < 2v + [log, K%D1 +2=nyz (27)
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